बीजगणित के सूत्र:
(a+b)² = a²+2ab+b²
(a-b)² = a²-2ab+b²
(a-b)² = (a+b)²-4ab
(a+b)² + (a-b)² = 2(a²+b²)
(a+b)² – (a-b)² = 4ab(a+b)³ = a³+3a²b+3ab²+b³
(a+b)² – (a-b)² = a³+b³+3ab(a+b)
(a-b)³ = a³-3a²b+3ab²-b³
(a-b)³ = a³+b³+3ab(a+b)
(a+b)³ + (a-b)³ = 2(a³+3ab²)
(a+b)³ + (a-b)³ = 2a(a²+3b²)
(a+b)³ – (a-b)³ = 3a²b+2b³
(a+b)³ – (a-b)³ = 2b(3a²+b²)
a²-b² = (a-b)(a+b)
a³+b³ = (a+b)(a²-ab+b²)
a³-b³ = (a-b)(a²+ab+b²)
a³-b³ = (a-b)³ + 3ab(a-b)
(a+b+c)² = a²+b²+c²+2(ab+bc+ca)
(a+b+c)³ = a³+b³+c³+3(a+b)(b+c)(c+a)
a³+b³+c³ = (a+b+c)³ – 3(a+b)(b+c)(c+a)
(a+b+c+d)² = a²+b²+c²+d²+2(ab+ac+ad+bc+bd+cd)
a³+b³+c³-3abc = (a+b+c)(a²+b²+c²-ab-bc-ca)।
https://whatsapp.com/channel/0029VarNbwfBvvsfE67CXd07/100
(a+b)² = a²+2ab+b²
(a-b)² = a²-2ab+b²
(a-b)² = (a+b)²-4ab
(a+b)² + (a-b)² = 2(a²+b²)
(a+b)² – (a-b)² = 4ab(a+b)³ = a³+3a²b+3ab²+b³
(a+b)² – (a-b)² = a³+b³+3ab(a+b)
(a-b)³ = a³-3a²b+3ab²-b³
(a-b)³ = a³+b³+3ab(a+b)
(a+b)³ + (a-b)³ = 2(a³+3ab²)
(a+b)³ + (a-b)³ = 2a(a²+3b²)
(a+b)³ – (a-b)³ = 3a²b+2b³
(a+b)³ – (a-b)³ = 2b(3a²+b²)
a²-b² = (a-b)(a+b)
a³+b³ = (a+b)(a²-ab+b²)
a³-b³ = (a-b)(a²+ab+b²)
a³-b³ = (a-b)³ + 3ab(a-b)
(a+b+c)² = a²+b²+c²+2(ab+bc+ca)
(a+b+c)³ = a³+b³+c³+3(a+b)(b+c)(c+a)
a³+b³+c³ = (a+b+c)³ – 3(a+b)(b+c)(c+a)
(a+b+c+d)² = a²+b²+c²+d²+2(ab+ac+ad+bc+bd+cd)
a³+b³+c³-3abc = (a+b+c)(a²+b²+c²-ab-bc-ca)।
https://whatsapp.com/channel/0029VarNbwfBvvsfE67CXd07/100